Identification

Title

Sources of error in dual-wavelength radar remote sensing of cloud liquid water content

Abstract

Dual-wavelength ratio (DWR) techniques offer the prospect of producing high-resolution mapping of cloud microphysical properties, including retrievals of cloud liquid water content (LWC) from reflectivity measured by millimeter-wavelength radars. Unfortunately, noise and artifacts in the DWR require smoothing to obtain physically realistic values of LWC with a concomitant loss of resolution. Factors that cause inaccuracy in the retrieved LWC include uncertainty in gas and liquid water attenuation coefficients, Mie scattering due to large water droplets or ice particles, corruption of the radar reflectivities by noise and nonatmospheric returns, and artifacts due to mismatched radar illumination volumes. The error analysis presented here consists of both analytic and heuristic arguments; it is illustrated using data from the Mount Washington Icing Sensors Project (MWISP) and from an idealized simulation. In addition to offering insight into design considerations for a DWR system, some results suggest methods that may mitigate some of these sources of error for existing systems and datasets.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7j38stf

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2007-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:38:32.737075

Metadata language

eng; USA