Identification

Title

Direct numerical simulation of wind-wave generation processes

Abstract

An air-water coupled model is developed to investigate wind-wave generation processes at low wind speed where the surface wind stress is about 0.089 dyn cm⁻² and the associated surface friction velocities of the air and the water are u*a~8.6 cms⁻¹ and u*w~0.3 cms⁻¹, respectively. The air-water coupled model satisfies continuity of velocity and stress at the interface simultaneously, and hence can capture the interaction between air and water motions. Our simulations show that the wavelength of the fastest growing waves agrees with laboratory measurements (λ~8-12 cm) and the wave growth consists of linear and exponential growth stages as suggested by theoretical and experimental studies. Constrained by the linearization of the interfacial boundary conditions, we perform simulations only for a short time period, about 70s; the maximum wave slope of our simulated waves is ak~0.01 and the associated wave age is c/u*a~5, which is a slow-moving wave. The effects of waves on turbulence statistics above and below the interface are examined. Sensitivity tests are carried out to investigate the effects of turbulence in the water, surface tension, and the numerical depth of the air domain. The growth rates of the simulated waves are compared to a previous theory for linear growth and to experimental data and previous simulations that used a prescribed wavy surface for exponential growth. In the exponential growth stage, some of the simulated wave growth rates are comparable to previous studies, but some are about 2-3 times larger than previous studies. In the linear growth stage, the simulated wave growth rates for these four simulation runs are about 1-2 times larger than previously predicted. In qualitative agreement with previous theories for slow-moving waves, the mechanisms for the energy transfer from wind to waves in our simulations are mainly from turbulence-induced pressure fluctuations in the linear growth stage and due to the in-phase relationship between wave slope and wave-induced pressure fluctuations in the exponential growth stage.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7m32vxz

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by the Cambridge University Press. Copyright 2008 Cambridge University Press.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T15:55:06.967960

Metadata language

eng; USA