Identification

Title

Shear�parallel tropical convective systems: Importance of cold pools and wind shear

Abstract

The impact of cold pools on line-orientated convective systems is assessed using idealized simulations of tropical oceanic convection under weak, moderate, and strong wind shear regimes. Cold pools are weakened by suppressing evaporation in the shallow subcloud layer. Analysis of objectively identified convective systems reveals that the convection with weaker cold pools is more often oriented parallel, rather than perpendicular, to the wind shear. The cold pool-induced orientation changes are most pronounced in the strong shear environment. Interactions between convective orientation and the tropical atmosphere are assessed. Simulations with shear-parallel convection demonstrate more top-of-atmosphere upwelling longwave radiation and less reflected shortwave radiation due to changes in convective anvils, faster-propagating larger-scale gravity waves, narrower cross-shear moisture distributions, and differences in convective momentum fluxes. The results highlight critical interactions across convective scales, mesoscales, and climate scales, as well as avenues for parameterizing structural modes of mesoscale-organized convection in global models.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d74b34k7

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-06-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:13:08.985483

Metadata language

eng; USA