Identification

Title

The amplitude of lee waves on the boundary-layer inversion

Abstract

This study presents an analytical model for the amplitude of lee waves on the boundary-layer inversion in two-dimensional flow. Previous linear lee wave models, in which the amplitude depends on the power spectrum of topography, can be inaccurate if the amplitude is large. Our model incorporates nonlinear effects by assuming that lee waves originate at a region of transition between super- and subcritical flow (internal jump) downstream of topography. Energy flux convergence at this location is compensated by the radiation of laminar lee waves. The available energy is estimated using a hydraulic jump model and the resulting wave amplitude is determined from linear theory. According to this model, the amplitude of lee waves depends essentially on their wavelength and on the inversion height difference across the jump. The new amplitude model is verified against numerical simulations and water tank experiments. The agreement between the model and the numerical results is excellent, while the verification with water tank experiments reveals that the accuracy of the model is comparable to that of numerical simulations. Finally, we derive a nonlinearity parameter for interfacial lee waves and discuss the regime transition from lee waves to hydraulic jumps in terms of the Froude number and the non-dimensional mountain and inversion heights. The National Center for Atmospheric Research is sponsored by the National Science Foundation. This article has been contributed to by a US Government employee and her work is in the public domain in the USA.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7t72k7x

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 Royal Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:10:12.685837

Metadata language

eng; USA