Identification

Title

On the influence of vertical mixing, boundary layer schemes, and temporal emission profiles on tropospheric NO 2 in WRF-Chem – comparisons to in situ, satellite, and MAX-DOAS observations

Abstract

We present WRF-Chem simulations over central Europe with a spatial resolution of 3 km x 3 km and focus on nitrogen dioxide (NO2). A regional emission inventory issued by the German Environmental Agency, with a spatial resolution of 1 km x 1 km, is used as input. We demonstrate by comparison of five different model setups that significant improvements in model accuracy can be achieved by choosing the appropriate boundary layer scheme, increasing vertical mixing strength, and/or tuning the temporal modulation of the emission data ("temporal profiles") driving the model. The model setup with improved vertical mixing is shown to produce the best results. Simulated NO2 surface concentrations are compared to measurements from a total of 275 in situ measurement stations in Germany, where the model was able to reproduce average noontime NO2 concentrations with a bias of ca. -3 % and R=0.74. The best agreement is achieved when correcting for the presumed NOy cross sensitivity of the molybdenum-based in situ measurements by computing an NOy correction factor from modelled peroxyacetyl nitrate (PAN) and nitric acid (HNO3) mixing ratios. A comparison between modelled NO2 vertical column densities (VCDs) and satellite observations from TROPOMI (TROPOspheric Monitoring Instrument) is conducted with averaging kernels taken into account. Simulations and satellite observations are shown to agree with a bias of +5.5 % and R=0.87 for monthly means. Lastly, simulated NO2 concentration profiles are compared to noontime NO2 profiles obtained from multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements at five locations in Europe. For stations within Germany, average biases of -25.3 % to +12.0 % were obtained. Outside of Germany, where lower-resolution emission data were used, biases of up to +50.7 % were observed. Overall, the study demonstrates the high sensitivity of modelled NO2 to the mixing processes in the boundary layer and the diurnal distribution of emissions.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d79w0kpw

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-01-09T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:05:12.691812

Metadata language

eng; USA