Impact of upstream urbanization on the urban heat island effects along the Washington-Baltimore corridor
Although there has been considerable research on urban heat island (UHI) effects, most of the previous studies have attributed UHI effects to localized, surface processes. In this study, the impact of upstream urbanization on enhanced UHI effects is examined using surface observations and numerical simulations of an extreme UHI event that occurred on 9 July 2007 over Baltimore, Maryland. Under southwesterly wind, Baltimore experienced higher peak surface temperatures and higher pollution concentrations than did the larger urban area of Washington, DC. Results from a coupled ultra-high resolution mesoscale - urban canopy model with 2001 National Land Cover Data (NLCD) show an advective contribution from upstream urbanization to the UHI event. This dynamical process is demonstrated by replacing Baltimore or its upstream urban areas by natural vegetation (in the model), indicating that the UHI effects could be reduced by as much as 25%. An analysis of the urban-Bay interaction reveals the importance of horizontal wind direction in determining the intensity of Bay breezes and the urban boundary layer structures. In addition, the vertical growth and structures of UHI effects are shown as layered âhot plumesâ in the mixed layer with pronounced rising motions, and these plumes can be advected many kilometers downstream. These findings suggest that judicious land-use and urban planning, especially in rapidly developing countries, could help alleviate UHI consequences including heat stress and smog. They also have important implications to improving the prediction of urban weather, including the initiation of moist convection, air quality, and other environment-related problems.
document
http://n2t.net/ark:/85065/d7rb75ws
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2011-10-01T00:00:00Z
Copyright 2011 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:05:36.881074