Identification

Title

Convective transport of water vapor into the lower stratosphere observed during double-tropopause events

Abstract

We present in situ observations of convectively injected water vapor in the lower stratosphere from instruments aboard two aircraft operated during the Deep Convective Clouds and Chemistry experiment. Water vapor mixing ratios in the injected air are observed to be 60-225 ppmv at altitudes 1-2 km above the tropopause (350-370 K potential temperature), well above observed background mixing ratios of 5-10 ppmv in the lower stratosphere. Radar observations of the responsible convective systems show deep overshooting at altitudes up to 4 km above the lapse rate tropopause and above the flight ceilings of the aircraft. Backward trajectories from the in situ observations show that convectively injected water vapor is observed from three distinct types of systems: isolated convection, a convective line, and a leading line-trailing stratiform mesoscale convective system. Significant transport of additional tropospheric or boundary layer trace gases is observed only for the leading line-trailing stratiform case. In addition, all observations of convective injection are found to occur within large-scale double-tropopause events from poleward Rossby wave breaking. Based on this relationship, we present a hypothesis on the role of the large-scale lower stratosphere during convective overshooting. In particular, the reduced lower stratosphere stability associated with double-tropopause environments may facilitate deeper levels of overshooting and convective injection.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7gf0vgk

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-09-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2014 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:56:07.192431

Metadata language

eng; USA