Identification

Title

Convolutional neural network-based adaptive localization for an ensemble Kalman filter

Abstract

Flow-dependent background error covariances estimated from short-term ensemble forecasts suffer from sampling errors due to limited ensemble sizes. Covariance localization is often used to mitigate the sampling errors, especially for high dimensional geophysical applications. Most applied localization methods, empirical or adaptive ones, multiply the Kalman gain or background error covariances by a distance-dependent parameter, which is a simple linear filtering model. Here two localization methods based on convolutional neural networks (CNNs) learning from paired data sets are proposed. The CNN-based localization function (CLF) aims to minimize the sampling error of the estimated Kalman gain, and the CNN-based empirical localization function (CELF) aims to minimize the posterior error of state variables. These two CNN-based localization methods can provide localization functions that are nonlinear, spatially and temporally adaptive, and non-symmetric with respect to displacement, without requiring any prior assumptions for the localization functions. Results using the Lorenz05 model show that CLF and CELF can better capture the structures of the Kalman gain than the best Gaspari and Cohn (GC) localization function and the adaptive reference localization method. For both perfect- and imperfect-model experiments, CLF produces smaller errors of the Kalman gain, prior and posterior than the best GC and reference localization, especially for spatially averaged observations. Without model error, CELF has smaller prior and posterior errors than the best GC and reference localization for spatially averaged observations, while with model error, CELF has smaller prior and posterior errors than the best GC and reference localization for single-point observations.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7280cp1

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:14:04.665627

Metadata language

eng; USA