Identification

Title

The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP)

Abstract

The hydrological impact of enhancing Earth's albedo by solar radiation management is investigated using simulations from 12 Earth System models contributing to the Geoengineering Model Intercomparison Project (GeoMIP). We contrast an idealized experiment, G1, where the global mean radiative forcing is kept at preindustrial conditions by reducing insolation while the CO2 concentration is quadrupled to a 4×CO₂ experiment. The reduction of evapotranspiration over land with instantaneously increasing CO₂ concentrations in both experiments largely contributes to an initial reduction in evaporation. A warming surface associated with the transient adjustment in 4×CO₂ generates an increase of global precipitation by around 6.9% with large zonal and regional changes in both directions, including a precipitation increase of 10% over Asia and a reduction of 7% for the North American summer monsoon. Reduced global evaporation persists in G1 with temperatures close to preindustrial conditions. Global precipitation is reduced by around 4.5%%, and significant reductions occur over monsoonal land regions: East Asia (6%), South Africa (5%), North America (7%), and South America (6%). The general precipitation performance in models is discussed in comparison to observations. In contrast to the 4×CO₂ experiment, where the frequency of months with heavy precipitation intensity is increased by over 50% in comparison to the control, a reduction of up to 20% is simulated in G1. These changes in precipitation in both total amount and frequency of extremes point to a considerable weakening of the hydrological cycle in a geoengineered world.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7n87bn3

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-10-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2013 American Geophysical Union

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:04:25.913722

Metadata language

eng; USA