Identification

Title

Meteoric smoke deposition in the polar regions: A comparison of measurements with global atmospheric models

Abstract

The accumulation rate of meteoric smoke particles (MSPs) in ice cores-determined from the trace elements Ir and Pt, and superparamagnetic Fe particles-is significantly higher than expected from the measured vertical fluxes of Na and Fe atoms in the upper mesosphere and the surface deposition of cosmic spherules. The Whole Atmosphere Community Climate Model with the Community Aerosol and Radiation Model for Atmospheres has been used to simulate MSP production, transport, and deposition, using a global MSP input of 7.9 t d(-1) based on these other measurements. The modeled MSP deposition rates are smaller than the measurements by factors of similar to 32 in Greenland and similar to 12 in Antarctica, even after reanalysis of the Ir/Pt ice core data with inclusion of a volcanic source. Variations of the model deposition scheme and use of the United Kingdom Chemistry and Aerosols model do not improve the agreement. Direct removal of MSP-nucleated polar stratospheric cloud particles to the surface gives much better agreement, but would result in an unfeasibly high rate of nitrate deposition. The unablated fraction of cosmic dust (similar to 35 t d(-1)) would provide sufficient Ir and Pt to account for the Antarctic measurements, but the relatively small flux of these large (> 3 mu m) particles would lead to greater variability in the ice core measurements than is observed, although this would be partly offset if significant fragmentation of cosmic dust particles occurred during atmospheric entry. Future directions to resolve these discrepancies between models and measurements are also discussed.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7fn18vm

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-10-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:15:55.638472

Metadata language

eng; USA