Identification

Title

Secondary ice production improves simulations of freezing rain

Abstract

Weather forecasts and climate projections of precipitation phase and type in winter storms are challenging due to the complicated underlying microphysical and dynamical processes. In the Canadian numerical weather prediction model, explicit freezing rain (FR) at the surface is often overestimated during the winter season for situations in which snow is observed. For a case study simulated using this model with the Predicted Particle Properties (P3) microphysics scheme, the secondary ice production (SIP) process has a major impact on the surface precipitation type. Parameterized SIP substantially reduces FR due to increased collection of supercooled drops with ice particles formed by rime splintering. Hindcast simulations of 40 winter cases show that these results are systematic, and the decreased frequency of FR leads to improved forecast skill relative to observations. Thus, accounting for SIP in the model is critical for accurately simulating precipitation types.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7cj8jn7

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-04-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:02:39.877601

Metadata language

eng; USA