Identification

Title

Impacts of extreme ultraviolet late phase of the solar flare on ionospheric electrodynamics

Abstract

Previous investigations of ionospheric electrodynamical responses to solar flares primarily focused on the main phases (MPs) of solar flares. Typical solar irradiance models for driving global ionosphere models do not include the extreme ultraviolet (EUV) late phase (ELP) of flares, which was recently observed with new high-quality solar EUV spectra. Thus, it is still unclear how ionospheric electrodynamics respond to the flare ELP. Here, we analyzed the ionospheric electrodynamical response to the MP and ELP of the X9.3 flare on 2017 September 6, using observations from ground magnetometers, along with simulation results from an ionosphere–thermosphere coupled model. Observations indicated an intensification of the dayside eastward equatorial electrojet (EEJ) by approximately 12 nT at the ELP peak as compared to the quiet day reference. Additionally, the dayside eastward electric field increased due to the ELP, which is different from the reduction of dayside electric fields during MP. The upward E × B plasma drifts decreased by 2.5 m s –1 during MP but increased by 0.75 m s –1 during the ELP. Altitude-dependent responses of ionospheric conductivities to the ELP modulated the relative contribution of the E- and F-region wind dynamo to zonal electric fields, resulting in an overall increase in the daytime eastward electric fields. Furthermore, combined effects of electric fields and conductivities enhancements contributed to EEJ intensification during the ELP. This study enhances our understanding of how solar flares with ELP change global ionospheric electric fields and currents.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7xd161z

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:58:12.143592

Metadata language

eng; USA