Identification

Title

New concentration-response functions for seven morbidity endpoints associated with short-term PM2.5 exposure and their implications for health impact assessment

Abstract

Background: Morbidity burdens from ambient air pollution are associated with market and non-market costs and are therefore important for policymaking. The estimation of morbidity burdens is based on concentration-response functions (CRFs). Most existing CRFs for short-term exposures to PM2.5 assume a fixed risk estimate as a log-linear function over an extrapolated exposure range, based on evidence primarily from Europe and North America. Objectives: We revisit these CRFs by performing a systematic review for seven morbidity endpoints previously assessed by the World Health Organization, including data from all available regions. These endpoints include all cardiovascular hospital admission, all respiratory hospital admission, asthma hospital admission and emergency room visit, along with the outcomes that stem from morbidity, such as lost work days, respiratory restricted activity days, and child bronchitis symptom days. Methods: We estimate CRFs for each endpoint, using both a log-linear model and a nonlinear model that includes additional parameters to better fit evidence from high-exposure regions. We quantify uncertainties associated with these CRFs through randomization and Monte Carlo simulations. Results: The CRFs in this study show reduced model uncertainty compared with previous CRFs in all endpoints. The nonlinear CRFs produce more than doubled global estimates on average, depending on the endpoint. Overall, we assess that our CRFs can be used to provide policy analysis of air pollution impacts at the global scale. It is however important to note that improvement of CRFs requires observations over a wide range of conditions, and current available literature is still limited. Discussion: The higher estimates produced by the nonlinear CRFs indicates the possibility of a large underestimation in current assessments of the morbidity impacts attributable to air pollution. Further studies should be pursued to better constrain the CRFs studied here, and to better characterize the causal relationship between exposures to PM2.5 and morbidity outcomes.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7mw2n60

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:15:05.237725

Metadata language

eng; USA