Identification

Title

Assessing the impact of stochastic perturbations in cloud microphysics using GOES-16 infrared brightness temperatures

Abstract

In this study, infrared brightness temperatures (BTs) are used to examine how applying stochastic perturbed parameter (SPP) methodology to the widely used Thompson-Eidhammer cloud microphysics scheme impacts the cloud field in high-resolution forecasts. Modifications are made to add stochastic perturbations to three parameters controlling cloud generation and dissipation processes. Two five-member ensembles are generated, one using the microphysics parameter perturbations (SPP-MP) and another where white noise perturbations were added to potential temperature fields at initialization time (Control). The impact of the SPP method was assessed using simulated and observed GOES-16 BTs. This analysis uses pixel-based and object-based methods to assess the impact on the cloud field. Pixel-based methods revealed that the SPP-MP BTs are slightly more accurate than the Control BTs. However, too few pixels with a BT lower than 270 K result in a positive bias compared to the observations. A negative bias compared to the observations is observed when only analyzing lower BTs. The spread of the ensemble BTs was analyzed using the continuous ranked probability score differences, with the SPP-MP ensemble BTs having less (more) spread during May (January) compared to the Control. Object-based analysis using the Method for Object-Based Diagnostic Evaluation revealed the upper-level cloud objects are smaller in the SPP-MP ensemble than the Control but a lower bias exists in the SPP-MP BTs compared to the Control BTs when overlapping matching objects. However, there is no clear distinction between the SPP-MP and Control ensemble members during the evolution of objects, Overall, the SPP-MP perturbations result in lower BTs compared to the Control ensemble and more cloudy pixels.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d75d8w5v

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:32:05.450539

Metadata language

eng; USA