Identification

Title

Assessing sensitivities in algorithmic detection of tropical cyclones in climate data

Abstract

This study applies a sensitivity analysis (SA) technique (the Morris method, MM) to an automated Lagrangian tropical cyclone (TC) tracking algorithm used on gridded climate data. MM demonstrates the ability to screen for input parameters defining TCs (such as minimum intensity and lifetime) that contribute significantly to sensitivity in output metrics (such as storm count). The SA is performed by tracking TCs in four different reanalyses. Tracked TC trajectories are compared to a pointwise observational record. Results show that using thermally integrated metrics for isolating TC warm cores is superior to single-temperature levels. Input thresholds defining TC vortex strength during tracking contribute the most variance in all output metrics. Integrated output metrics (such as accumulated cyclone energy) are less variable than counting metrics such as TC frequency. MM greatly reduces the computational requirements for tracker optimization, with tracked TCs demonstrating better hit and false alarm rates than previous studies.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7z89f62

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-01-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:11:03.005218

Metadata language

eng; USA