Identification

Title

Future bioenergy expansion could alter carbon sequestration potential and exacerbate water stress in the United States

Abstract

The maximum future projected bioenergy expansion potential, in scenarios limiting warming to 2 degrees C or below, is equivalent to half of present-day croplands. We quantify the impacts of large-scale bioenergy expansion against re/afforestation, which remain elusive, using an integrated human-natural system modeling framework with explicit representation of perennial bioenergy crops. The end-of-century net carbon sequestration due to bioenergy deployment coupled with carbon capture and storage largely depends on fossil fuel displacement types, ranging from 11.4 to 31.2 PgC over the conterminous United States. These net carbon sequestration benefits are inclusive of a 10 PgC carbon release due to land use conversions and a 2.4 PgC loss of additional carbon sink capacity associated with bioenergy-driven deforestation. Moreover, nearly one-fourth of U.S. land areas will suffer severe water stress by 2100 due to either reduced availability or deteriorated quality. These broader impacts of bioenergy expansion should be weighed against the costs and benefits of re/afforestation-based strategies.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7v40zwh

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-05-04T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 Author(s).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:36:13.024689

Metadata language

eng; USA