Identification

Title

An automated velocity dealiasing scheme for radar data observed from typhoons and hurricanes

Abstract

Accurate and automated dealiasing of radar data is important for data interpretation and downstream applications such as numerical weather prediction (NWP) models. In this paper an improved radial velocity dealiasing scheme is presented and evaluated using observations from several S-band radars under the severe weather conditions of typhoons and hurricanes. This scheme, named Automated Dealiasing for Typhoon and Hurricane (ADTH), is a further development of the China New Generation Doppler Weather Radar (CINRAD) improved dealiasing algorithm (CIDA). The upgraded algorithm ADTH includes three modules designed to select the first radial from which the dealiasing process starts, to conduct a two-way multipass dealiasing, and to perform an error check for a final local dealiasing. The dealiasing algorithm is applied to two typhoon hurricane cases and four typhoon cases observed with radars from CINRAD, NEXRAD of the United States, and the Taiwan radar network for a continuous period of 12 h for each of the selected cases. The results show that ADTH outperforms CIDA for all of the test cases.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7dv1nwc

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:22:50.437476

Metadata language

eng; USA