Influence of carbon-nitrogen cycle coupling on land model response to CO₂ fertilization and climate variability
Nutrient cycling affects carbon uptake by the terrestrial biosphere and imposes controls on carbon cycle response to variation in temperature and precipitation, but nutrient cycling is ignored in most global coupled models of the carbon cycle and climate system. We demonstrate here that the inclusion of nutrient cycle dynamics, specifically the close coupling between carbon and nitrogen cycles, in a terrestrial biogeochemistry component of a global coupled climate system model leads to fundamentally altered behavior for several of the most critical feedback mechanisms operating between the land biosphere and the global climate system. Carbon-nitrogen cycle coupling reduces the simulated global terrestrial carbon uptake response to increasing atmospheric CO₂ concentration by 74%, relative to a carbon-only counterpart model. Global integrated responses of net land carbon exchange to variation in temperature and precipitation are significantly damped by carbon-nitrogen cycle coupling. The carbon cycle responses to temperature and precipitation variation are reduced in magnitude as atmospheric CO₂ concentration rises for the coupled carbon-nitrogen model, but increase in magnitude for the carbon-only counterpart. Our results suggest that previous carbon-only treatments of climate-carbon cycle coupling likely overestimate the terrestrial biosphere's capacity to ameliorate atmospheric CO₂ increases through direct fertilization. The next generation of coupled climate-biogeochemistry model projections for future atmospheric CO₂ concentration and climate change should include explicit, prognostic treatment of terrestrial carbon-nitrogen cycle coupling.
document
https://n2t.org/ark:/85065/d7nc61fb
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2007-12-14T00:00:00Z
Copyright 2007 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-17T16:00:28.318355