Identification

Title

Estimating snow microphysical properties using collocated multisensor observations

Abstract

The ability of ground-based in situ and remote sensing observations to constrain microphysical properties for dry snow is examined using a Bayesian optimal estimation retrieval method. Power functions describing the variation of mass and horizontally projected area with particle size and a parameter related to particle shape are retrieved from near-Rayleigh radar reflectivity, particle size distribution, snowfall rate, and size-resolved particle fall speeds. Algorithm performance is explored in the context of instruments deployed during the Canadian CloudSat CALIPSO Validation Project, but the algorithm is adaptable to other similar combinations of sensors. Critical estimates of observational and forward model uncertainties are developed and used to quantify the performance of the method using synthetic cases developed from actual observations of snow events. In addition to illustrating the technique, the results demonstrate that this combination of sensors provides useful constraints on the mass parameters and on the coefficient of the area power function but only weakly constrains the exponent of the area power function and the shape parameter. Information content metrics show that about two independent quantities are measured by the suite of observations and that the method is able to resolve about eight distinct realizations of the state vector containing the mass and area power function parameters. Alternate assumptions about observational and forward model uncertainties reveal that improved modeling of particle fall speeds could contribute substantial improvements to the performance of the method.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7js9rfc

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-07-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2014 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:55:42.284597

Metadata language

eng; USA