Identification

Title

A deep learning framework for instrument-to-instrument translation of solar observation data

Abstract

<p><span style="-webkit-text-stroke-width:0px;background-color:rgb(255, 255, 255);color:rgb(34, 34, 34);display:inline !important;float:none;font-family:Harding, Palatino, serif;font-size:18px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;orphans:2;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;white-space:normal;widows:2;word-spacing:0px;">The constant improvement of astronomical instrumentation provides the foundation for scientific discoveries. In general, these improvements have only implications forward in time, while previous observations do not benefit from this trend, and the joint use of data sets from different instruments is typically limited by differences in calibration and quality. We provide a deep learning framework for Instrument-To-Instrument translation of solar observation data, enabling homogenized data series of multi-instrument data sets. This is achieved by unpaired domain translations with Generative Adversarial Networks, which eliminate the need for spatial or temporal overlap to relate instruments. We demonstrate that the available data sets can directly profit from instrumental improvements, by applying our method to four different applications of ground- and space-based solar observations. We obtain a homogenized data series of 24 years of space-based observations of the solar EUV corona and line-of-sight magnetic field, solar full-disk observations with increased spatial resolution, real-time mitigation of atmospheric degradations in ground-based observations, and unsigned magnetic field estimates from the solar far-side based on EUV imagery. The direct comparison to simultaneous high-quality observations shows that our method produces images that are perceptually similar, and enables more homogeneous multi-instrument data sets without the requirement of spatial or temporal alignment.</span></p>

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d71n85ht

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-04-02T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:47:33.697242

Metadata language

eng; USA