Identification

Title

Impact of increased vertical resolution in WACCM on the climatology of major Sudden Stratospheric Warmings

Abstract

Sudden stratospheric warmings (SSWs) are a major mode of variability of the winter stratosphere. In recent years, climate models have improved their ability to simulate SSWs. However, the representation of the frequency and temporal distribution of SSWs in models depends on many factors and remains challenging. The vertical resolution of a model might be one such factor. Therefore, here we analyse the impact of increased vertical resolution on the simulation of major sudden stratospheric warmings (SSWs) in the Whole Atmosphere Community Climate Model (WACCM). We compare two versions of the model, WACCM3.5 and WACCM4. We find that the frequency of occurrence of SSWs is improved in the newer version and closer to that obtained using reanalysis. Furthermore, simulations with a coupled ocean best reproduce the behaviour of temperature during these events. Increasing vertical resolution increases the number of occurrences; however, it does not produce significantly different results than standard resolution. WACCM4 also does not reproduce vortex split events well, generating far fewer of these than observed. Finally, the ratio between polar vortex splits and displacement events in the model is slightly better for non-ocean-coupled simulations. We conclude that, at least for WACCM4, the use of the high vertical resolution configuration is not cost-effective for the study of SSWs.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d76q21xh

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:36:27.188749

Metadata language

eng; USA