Identification

Title

Evaluating hydrologic model performance for characterizing streamflow drought in the conterminous United States

Abstract

Hydrologic models are the primary tools that are used to simulate streamflow drought and assess impacts. However, there is little consensus about how to evaluate the performance of these models, especially as hydrologic modeling moves toward larger spatial domains. This paper presents a comprehensive multi-objective approach to systematically evaluating the critical features in streamflow drought simulations performed by two widely used hydrological models. The evaluation approach captures how well a model classifies observed periods of drought and non-drought, quantifies error components during periods of drought, and assesses the models’ simulations of drought severity, duration, and intensity. We apply this approach at 4662 U.S. Geological Survey streamflow gages covering a wide range of hydrologic conditions across the conterminous U.S. from 1985 to 2016 to evaluate streamflow drought using two national-scale hydrologic models: the National Water Model (NWM) and the National Hydrologic Model (NHM); therefore, a benchmark against which to evaluate additional models is provided. Using this approach, we find that generally the NWM better simulates the timing of flows during drought, while the NHM better simulates the magnitude of flows during drought. Both models performed better in wetter eastern regions than in drier western regions. Finally, each model showed increased error when simulating the most severe drought events.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7hm5ds5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:58:02.359242

Metadata language

eng; USA