Identification

Title

Improving regional ozone modeling through systematic evaluation of errors using the aircraft observations during the International Consortium for Atmospheric Research on Transport and Transformation

Abstract

During the operational phase of the ICARTT field experiment in 2004, the regional air quality model STEM showed a strong positive surface bias and a negative upper troposphere bias (compared to observed DC-8 and WP-3 observations) with respect to ozone. After updating emissions from NEI 1999 to NEI 2001 (with a 2004 large point sources inventory update), and modifying boundary conditions, low-level model bias decreases from 11.21 to 1.45 ppbv for the NASA DC-8 observations and from 8.26 to -0.34 for the NOAA WP-3. Improvements in boundary conditions provided by global models decrease the upper troposphere negative ozone bias, while accounting for biomass burning emissions improved model performance for CO. The covariances of ozone bias were highly correlated to NOz, NOy, and HNO₃ biases. Interpolation of bias information through kriging showed that decreasing emissions in SE United States would reduce regional ozone model bias and improve model correlation coefficients. The spatial distribution of forecast errors was analyzed using kriging, which identified distinct features, which when compared to errors in postanalysis simulations, helped document improvements. Changes in dry deposition to crops were shown to reduce substantially high bias in the forecasts in the Midwest, while updated emissions were shown to account for decreases in bias in the eastern United States. Observed and modeled ozone production efficiencies for the DC-8 were calculated and shown to be very similar (7.8) suggesting that recurring ozone bias is due to overestimation of NOx emissions. Sensitivity studies showed that ozone formation in the United States is most sensitive to NOx emissions, followed by VOCs and CO. PAN as a reservoir of NOx can contribute to a significant amount of surface ozone through thermal decomposition.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7f76csq

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2007-06-09T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2007 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T17:01:34.230753

Metadata language

eng; USA