Vertical air motion from t-rex radiosonde and dropsonde data
The primary goal of this study is to explore the potential for estimating the vertical velocity (VV) of air from the surface to the stratosphere, using widely available radiosonde and dropsonde data. The rise and fall rates of radiosondes and dropsondes, respectively, are a combination of the VV of the atmosphere and still-air rise-fall rates. The still-air rise-fall rates are calculated using basic fluid dynamics and characteristics of radiosonde and dropsonde systems. This study validates the technique to derive the VV from radiosonde and dropsonde data and demonstrates its value. This technique can be easily implemented by other users for various scientific applications. The technique has been applied to the Terrain-induced Rotor Experiment (T-REX) dropsonde and radiosonde data. Comparisons among radiosonde, dropsonde, aircraft, and profiling radar vertical velocities show that the sonde-estimated VV is able to capture and describe events with strong vertical motions (larger than Superscript Minus - ⁻ Tilde ∼1 m s⁻¹) observed during T-REX. The VV below Superscript Minus - ⁻ Tilde ∼5 km above ground, however, is overestimated by the radiosonde data. The analysis of derived VVs shows interesting features of gravity waves, rotors, and turbulence. Periodic variations of vertical velocity in the stratosphere, as indicated by the radiosonde data, correspond to the horizontal wavelength of gravity waves with an averaged horizontal wavelength of Superscript Minus - ⁻ Tilde ∼15 km. Two-dimensional VV structure is described in detail by successive dropsonde deployment.
document
https://n2t.org/ark:/85065/d7gf0vjg
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2009-05-01T00:00:00Z
Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-17T15:31:08.114158