Identification

Title

Steadiness of coronal heating

Abstract

The EUI instrument on the Solar Orbiter spacecraft has obtained the most stable, high-resolution images of the solar corona from its orbit with a perihelion near 0.4 au. A sequence of 360 images obtained at 17.1 nm, between 2022 October 25 19:00 and 19:30 UT, is scrutinized. One image pixel corresponds to 148 km at the solar surface. The widely held belief that the outer atmosphere of the Sun is in a continuous state of magnetic turmoil is pitted against the EUI data. The observed plasma variations appear to fall into two classes. By far the dominant behavior is a very low amplitude variation in brightness (1%) in the coronal loops, with larger variations in some footpoint regions. No hints of observable changes in magnetic topology are associated with such small variations. The larger-amplitude, more rapid, rarer, and less well organized changes are associated with flux emergence. It is suggested therefore that while magnetic reconnection drives the latter, most of the active corona is heated with no evidence of a role for large-scale (observable) reconnection. Since most coronal emission-line widths are subsonic, the bulk of coronal heating, if driven by reconnection, can only be of tangentially discontinuous magnetic fields, with angles below about 0.5c S /c A similar to 0.3 beta, with beta the plasma beta parameter (similar to 0.01) and c S and c A the sound and Alfven speeds, respectively. If heated by multiple small flare-like events, then these must be less than or similar to 1021 erg, i.e., picoflares. But processes other than reconnection have yet to be ruled out, such as viscous dissipation, which may contribute to the steady heating of coronal loops over active regions.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7cz3c8g

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:13:04.298414

Metadata language

eng; USA