Revisiting ENSO/Indian Ocean Dipole phase relationships
Here we show that the characteristics of the Indian Ocean Dipole (IOD), such as its power spectrum and phase relationship with the El Nino-Southern Oscillation (ENSO), can be succinctly explained by ENSO combination mode (C-mode) wind and heat flux forcing together with a seasonal modulation of the air/sea coupled Indian Ocean (IO) Bjerknes feedback. This model explains the observed high-frequency near-annual IOD variability in terms of deterministic ENSO/annual cycle interactions. ENSO-independent IOD events can be understood as a seasonally modulated ocean response to white noise atmospheric forcing. Under this new physical null hypothesis framework, IOD predictability is determined by both ENSO predictability and the ENSO signal-to-noise ratio. We further emphasize that lead/lag correlations between different climate variables are easily misinterpreted when not accounting properly for the seasonal modulation of the underlying climate phenomena.
document
http://n2t.net/ark:/85065/d7cv4khf
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2017-03-13T00:00:00Z
Copyright 2017 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:10:07.610514