Raytracing simulated GPS radio wave propagation paths experiencing large disturbances when going through the top of the sub-cloud layer
Global positioning satellite system (GPS) radio waves that reach the tropical lower troposphere are strongly affected by small-scale water vapor fluctuations. We examine along-the-ray simulations of the impact parameter at every ray integration step using the high-resolution European Centre for Medium-Range Weather Forecasts ERA5 reanalysis as the input model states. We find that disturbances to the impact parameter arise when ray paths go through the top of the sub-cloud layer, where there is a pronounced reduction with increasing height in the humidity, and wet refractivity has a strong local vertical gradient, creating multipath. Additionally, the horizontal gradients of refractivity cause the impact parameter to vary along the ray. The disturbances to the impact parameter are confined to an area about 250 km horizontally and 4 km vertically from the perigee point. Beyond 250 km from the perigee, the impact parameter remains constant. The vertical gradient of refractivity is largest at the top of the sub-cloud layer, usually between 1.5 and 3.0 km, and becomes negligibly small above 4 km.
document
https://n2t.org/ark:/85065/d74q7zg4
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2021-11-20T00:00:00Z
Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-11T16:09:47.924197