Improved vertical covariance estimates for ensemble-filter assimilation of near-surface observations
Strategies to improve covariance estimates for ensemble-based assimilation of near-surface observations in atmospheric models are explored. It is known that localization of covariance estimates can improve conditioning of covariance matrices in the assimilation process by removing spurious elements and increasing the rank of the matrix. Vertical covariance localization is the focus of this work, and two basic approaches are compared: 1) a recently proposed hierarchical filter approach based on sampling theory and 2) a more commonly used fifth-order piecewise rational function. The hierarchical filter allows for dynamic estimates of localization functions and does not place any restrictions on their form. The rational function is optimized for every analysis time of day and for every possible observation and state variable combination. The methods are tested with a column model containing PBL and land surface parameterization schemes that are available in current mesoscale modeling systems. The results are expected to provide context for assimilation of near-surface observations in mesoscale models, which will benefit short-range mesoscale NWP applications. Results show that both the hierarchical and rational function approaches effectively improve covariance estimates from small ensembles. The hierarchical approach provides localization functions that are irregular and more closely related to PBL structure. Analysis of eigenvalue spectra show that both approaches improve the rank of the covariance matrices, but the amount of improvement is not always directly related to the assimilation performance. Results also show that specifying different localization functions for different observation and state variable combinations is more important than including time dependence.
document
https://n2t.org/ark:/85065/d7x92bjp
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2007-03-01T00:00:00Z
Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-17T17:03:03.152514