Identification

Title

Improved vertical covariance estimates for ensemble-filter assimilation of near-surface observations

Abstract

Strategies to improve covariance estimates for ensemble-based assimilation of near-surface observations in atmospheric models are explored. It is known that localization of covariance estimates can improve conditioning of covariance matrices in the assimilation process by removing spurious elements and increasing the rank of the matrix. Vertical covariance localization is the focus of this work, and two basic approaches are compared: 1) a recently proposed hierarchical filter approach based on sampling theory and 2) a more commonly used fifth-order piecewise rational function. The hierarchical filter allows for dynamic estimates of localization functions and does not place any restrictions on their form. The rational function is optimized for every analysis time of day and for every possible observation and state variable combination. The methods are tested with a column model containing PBL and land surface parameterization schemes that are available in current mesoscale modeling systems. The results are expected to provide context for assimilation of near-surface observations in mesoscale models, which will benefit short-range mesoscale NWP applications. Results show that both the hierarchical and rational function approaches effectively improve covariance estimates from small ensembles. The hierarchical approach provides localization functions that are irregular and more closely related to PBL structure. Analysis of eigenvalue spectra show that both approaches improve the rank of the covariance matrices, but the amount of improvement is not always directly related to the assimilation performance. Results also show that specifying different localization functions for different observation and state variable combinations is more important than including time dependence.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7x92bjp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2007-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T17:03:03.152514

Metadata language

eng; USA