Identification

Title

Freshwater flux and ocean chlorophyll produce nonlinear feedbacks in the tropical Pacific

Abstract

Various forcing and feedback processes coexist in the tropical Pacific, which can modulate El Nino-Southern Oscillation (ENSO). In particular, large covariabilities in chlorophyll (Chl) and freshwater flux (FWF) at the sea surface are observed during ENSO cycles, acting to execute feedbacks on ENSO through the related ocean-biology-induced heating (OBH) and FWF forcing, respectively. At present, the related effects and underlying mechanism are strongly model dependent and are still not well understood. Here, a new hybrid coupled model (HCM), developed to represent interactions between the atmosphere and ocean physics-biology (AOPB) in the tropical Pacific, is used to examine the extent to which ENSO can be modulated by interannually covarying anomalies of FWF and Chl. HCM AOPB-based sensitivity experiments indicate that individually the FWF forcing tends to amplify ENSO via its influence on the stratification and vertical mixing in the upper ocean, whereas the OBH feedback tends to damp it. While the FWF- and OBH-related individual effects tend to counteract each other, their combined effects give rise to unexpected situations. For example, an increase in the FWF forcing intensity actually acts to decrease the ENSO amplitude when the OBH feedback effects coexist at a certain intensity. The nonlinear modulation of the ENSO amplitude can happen when the FWF-related amplifying effects on ENSO are compensated for by OBH-related damping effects. The results offer insight into modulating effects on ENSO, which are evident in nature and different climate models.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7t156p8

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2022-10-07T15:38:16.786277

Metadata language

eng; USA