Identification

Title

Mesoscale and submesoscale effects on mixed layer depth in the southern ocean

Abstract

Submesoscale dynamics play a key role in setting the stratification of the ocean surface mixed layer and mediating air-sea exchange, making them especially relevant to anthropogenic carbon uptake and primary productivity in the Southern Ocean. In this paper, a series of offline-nested numerical simulations is used to study submesoscale flow in theDrake Passage and Scotia Sea regions of the Southern Ocean. These simulations are initialized from an ocean state estimate for late April 2015, with the intent to simulate features observed during the Surface Mixed Layer at Submesoscales (SMILES) research cruise, which occurred at that time and location. The nested models are downscaled from the original state estimate resolution of 1/12 degrees and grid spacing of about 8 km, culminating in a submesoscale-resolving model with a resolution of 1/192 degrees and grid spacing of about 500m. The submesoscale eddy field is found to be highly spatially variable, with pronounced hot spots of submesoscale activity. These areas of high submesoscale activity correspond to a significant difference in the 30-day average mixed layer depth DHML between the 1/12 degrees and 1/192 degrees simulations. Regions of large vertical velocities in the mixed layer correspond with high mesoscale strain rather than large DHML. It is found that DHML is well correlated with the mesoscale density gradient but weakly correlated with both the mesoscale kinetic energy and strain. This has implications for the development of submesoscale eddy parameterizations that are sensitive to the character of the large-scale flow.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7dr2z17

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:16:53.456049

Metadata language

eng; USA