Identification

Title

Convergent approaches to determine an ecosystem's transpiration fraction

Abstract

The transpiration (T) fraction of total terrestrial evapotranspiration (ET), T/ET, can vary across ecosystems between 20-95% with a global average of ∼60%. The wide range may either reflect true heterogeneity between ecosystems and/or uncertainties in the techniques used to derive this property. Here we compared independent approaches to estimate T/ET at two needleleaf forested sites with a factor of 3 difference in leaf area index (LAI). The first method utilized water vapor isotope profiles and the second derived transpiration through its functional relationship with gross primary production. We found strong agreement between T/ET values from these two independent approaches although we noted a discrepancy at low vapor pressure deficits (VPD). We hypothesize that this divergence arises because stomatal conductance is independent of humidity at low VPD. Overall, we document significant synoptic-scale T/ET variability but minimal growing season-scale variability. This result indicates a high sensitivity of T/ET to passing weather but convergence toward a stable mean state, which is set by LAI. While changes in T/ET could emerge from a myriad of processes, including aboveground (LAI) or belowground (rooting depth) changes, there was only minimal interannual variability and no secular trend in our analysis of T/ET from the 15 year eddy covariance time series at Niwot Ridge. If the lack of trend observed here is apparent elsewhere, it suggests that the processes controlling the T and E fluxes are coupled in a way to maintain a stable ratio.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7cf9rsv

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:02:52.318034

Metadata language

eng; USA