Surface impacts of large offshore wind farms
Future offshore wind farms around the world will be built with wind turbines of size and capacity never seen before (with diameter and hub height exceeding 150 and 100 m, respectively, and rated power exceeding 10 MW). Their potential impacts at the surface have not yet been studied. Here we conduct high-resolution numerical simulations using a mesoscale model with a wind farm parameterization and compare scenarios with and without offshore wind farms equipped with these 'extreme-scale' wind turbines. Wind speed, turbulence, friction velocity, and sensible heat fluxes are slightly reduced at the surface, like with conventional wind turbines. But, while the warming found below the rotor in stable atmospheric conditions extends to the surface with conventional wind turbines, with extreme-scale ones it does not reach the surface, where instead minimal cooling is found. Overall, the surface meteorological impacts of large offshore wind farms equipped with extreme-scale turbines are statistically significant but negligible in magnitude.
document
https://n2t.org/ark:/85065/d7pr80px
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2022-06-01T00:00:00Z
Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-11T16:02:42.105547