Increase in MJO predictability under global warming
The Madden-Julian Oscillation (MJO) is a dominant source of subseasonal atmospheric variability in the tropics and significantly impacts global weather and climate predictability. Changes in its activity and predictability due to human-induced global climate change have profound implications for future global weather prediction. Here we investigate changes in MJO predictability in reanalysis and climate model data and find that MJO predictability has increased over the past century. This increase can be attributed to anthropogenic warming and continues during the twenty-first century in projections. The increased predictability is accompanied by stronger MJO amplitude, more regular oscillation patterns and organized eastward propagation under global warming. Our results suggest that greenhouse warming will increase the predictability of the MJO, with far-reaching consequences for global weather prediction.
document
https://n2t.org/ark:/85065/d7cj8jkb
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2024-01-01T00:00:00Z
Copyright 2024 Springer Nature Limited.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-10T20:05:21.550702