Identification

Title

Ionosphere state and parameter estimation using the Ensemble Square Root Filter and the global three-dimensional first-principle model

Abstract

In the present paper we discuss the setup and the results of series of numerical experiments aiming to recover the E → × B → plasma drift and neutral wind velocities using the Ensemble Square Root Filter together with the ionospheric numerical model. One of the objectives of the current research was assessing the performance of the upper atmosphere state and parameter ensemble estimation technique in the framework of the Observational System Simulation Experiment (OSSE). The other purpose was to improve calculation accuracy for the major driving forces in the ionosphere and to increase modeling reliability in real-data operational cases. In the current paper we describe the setup of the modeling system used to obtain the presented results. In the first section we introduce the background physics-based model used in the simulations and discuss its main assumptions along with E → × B → drift and the neutral wind velocity calculation algorithms. Further we present the observations simulation system and describe the data used for assimilation and parameter estimation. We also provide a brief description of the Ensemble Square Root Filter and its application in the current study. In the last few sections the results of the numerical experiments are presented and discussed.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d70c4whx

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2012-07-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2012 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-15T21:33:45.422312

Metadata language

eng; USA