Identification

Title

A high-end estimate of sea level rise for practitioners

Abstract

Sea level rise (SLR) is a long-lasting consequence of climate change because global anthropogenic warming takes centuries to millennia to equilibrate for the deep ocean and ice sheets. SLR projections based on climate models support policy analysis, risk assessment and adaptation planning today, despite their large uncertainties. The central range of the SLR distribution is estimated by process-based models. However, risk-averse practitioners often require information about plausible future conditions that lie in the tails of the SLR distribution, which are poorly defined by existing models. Here, a community effort combining scientists and practitioners builds on a framework of discussing physical evidence to quantify high-end global SLR for practitioners. The approach is complementary to the IPCC AR6 report and provides further physically plausible high-end scenarios. High-end estimates for the different SLR components are developed for two climate scenarios at two timescales. For global warming of +2 degrees C in 2100 (RCP2.6/SSP1-2.6) relative to pre-industrial values our high-end global SLR estimates are up to 0.9 m in 2100 and 2.5 m in 2300. Similarly, for a (RCP8.5/SSP5-8.5), we estimate up to 1.6 m in 2100 and up to 10.4 m in 2300. The large and growing differences between the scenarios beyond 2100 emphasize the long-term benefits of mitigation. However, even a modest 2 degrees C warming may cause multi-meter SLR on centennial time scales with profound consequences for coastal areas. Earlier high-end assessments focused on instability mechanisms in Antarctica, while here we emphasize the importance of the timing of ice shelf collapse around Antarctica. This is highly uncertain due to low understanding of the driving processes. Hence both process understanding and emission scenario control high-end SLR.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7jh3r2d

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:58:05.858625

Metadata language

eng; USA