Identification

Title

Modeling solar eclipses at extreme ultra violet wavelengths and the effects of nonuniform eclipse shadow on the ionosphere‐thermosphere system

Abstract

The impacts of solar eclipses on the ionosphere-thermosphere system particularly the composition, density, and transport are studied using numerical simulation and subsequent model-data comparison. We introduce a newly developed model of a solar eclipse mask (shadow) at extreme ultraviolet (EUV) wavelengths-PyEclipse-that computes the corresponding shadowing as a function of space, time, and wavelength of the input solar image. The current model includes interfaces for Solar Dynamics Observatory and Geostationary Operational Environmental Satellites EUV telescopes providing solar images at nine different wavelengths. We show the significance of the EUV eclipse shadow spatial variability and that it varies significantly with wavelength owing to the highly variable solar coronal emissions. We demonstrate geometrical differences between the EUV eclipse shadow compared to a geometrically symmetric simplification revealing changes in occultation vary +/- 20%. The EUV eclipse mask is validated with in situ solar flux measurements by the PRoject for Onboard Autonomy 2/Large Yield Radiometer instrument suite showing the model captures the morphology and amplitudes of transient variability while the modeled gradients are slower. The effects of spatially EUV eclipse masks are investigated with Global Ionosphere Thermosphere Model for the 21 August 2017 eclipse. The results reveal that the modeled EUV eclipse mask, in comparison with the geometrically symmetric approximation, causes changes in the Total Electron Content in order of +/- 20%, 5%-20% in F-region plasma drift, and 20%-30% in F-region neutral winds.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7xw4pqp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:20:27.626165

Metadata language

eng; USA