Identification

Title

How well do we know ENSO's climate impacts over North America, and how do we evaluate models accordingly?

Abstract

The role of sampling variability in ENSO composites of winter surface air temperature and precipitation over North America during the period 1920-2013 is assessed for observations and ensembles of coupled model simulations in which sea surface temperature anomalies in the tropical eastern Pacific are nudged to those of the real world. The individual members of each model ensemble show a surprising amount of diversity in their ENSO composites, despite being constructed from the same observed set of 18 El Nino and 14 La Nina events. For a given model, this ensemble spread can only be due to sampling variability, that is, aliasing of internal variability that is unrelated to ENSO, which in turn is shown to arise from internal atmospheric dynamics rather than coupled ocean-atmosphere processes. Analogous ensemble spread is evident in 2000 synthetic ENSO composites based on observations using random sampling techniques. These synthetic composites provide information on the range of spatial patterns and amplitudes associated with imperfect estimation of the forced ENSO signal in the observational record. In some locations, the amplitude of the estimated ENSO signal can vary by more than a factor of two. This observational uncertainty necessitates an approach to model assessment that considers not only the model's forced response to ENSO, given by its ensemble-mean ENSO composite, but also its representation of internal variability unrelated to ENSO. Such an approach is used to reveal fidelities and shortcomings in the Community Earth System Model, version 1.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7dv1npp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:37:24.109781

Metadata language

eng; USA