Identification

Title

Nuclear winter responses to nuclear war between the United States and Russia in the Whole Atmosphere Community Climate Model Version 4 and the Goddard Institute for Space Studies ModelE

Abstract

Current nuclear arsenals used in a war between the United States and Russia could inject 150 Tg of soot from fires ignited by nuclear explosions into the upper troposphere and lower stratosphere. We simulate the climate response using the Community Earth System Model-Whole Atmosphere Community Climate Model version 4 (WACCM4), run at 2 degrees horizontal resolution with 66 layers from the surface to 140 km, with full stratospheric chemistry and with aerosols from the Community Aerosol and Radiation Model for Atmospheres allowing for particle growth. We compare the results to an older simulation conducted in 2007 with the Goddard Institute for Space Studies ModelE run at 4 degrees x 5 degrees horizontal resolution with 23 levels up to 80 km and constant specified aerosol properties and ozone. These are the only two comprehensive climate model simulations of this scenario. Despite having different features and capabilities, both models produce similar results. Nuclear winter, with below freezing temperatures over much of the Northern Hemisphere during summer, occurs because of a reduction of surface solar radiation due to smoke lofted into the stratosphere. WACCM4's more sophisticated aerosol representation removes smoke more quickly, but the magnitude of the climate response is not reduced. In fact, the higher-resolution WACCM4 simulates larger temperature and precipitation reductions than ModelE in the first few years following a 150-Tg soot injection. A strengthening of the northern polar vortex occurs during winter in both simulations in the first year, contributing to above normal, but still below freezing, temperatures in the Arctic and northern Eurasia.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d76q21cb

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-08-08T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:13:05.575487

Metadata language

eng; USA