Identification

Title

The impact of assimilating COSMIC‐2 observations of electron density in WACCMX

Abstract

The present study investigates the impact of assimilating electron density profiles from the Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) mission in a whole atmosphere data assimilation system. The observations are assimilated into the Whole Atmosphere Community Climate Model with thermosphere-ionosphere eXtension (WACCMX) using the Data Assimilation Research Testbed (DART) ensemble adjustment Kalman filter. Assimilation of the COSMIC-2 electron density profiles during the evaluation time period of 25–30 April 2020 leads to improvement in both the 1 hr forecast and analysis electron densities in WACCMX + DART. Compared to a control experiment that does not assimilate COSMIC-2 observations, the assimilation of the COSMIC-2 electron density profiles reduces the 1 hr forecast root mean square error (RMSE) and bias with respect to COSMIC-2 observations at 300 km by 6.76% and 24.91%, respectively. Assimilation of the COSMIC-2 electron density profiles does not significantly influence the RMSE and bias with respect to ground-based Global Navigation Satellite System vertical total electron content observations. The equatorial vertical plasma drift velocity in WACCMX + DART is changed by ±5–10 ms−1 due to the assimilation of the COSMIC-2 electron density profiles, indicating that the model representation of the electrodynamics of the low latitude ionosphere are significantly impacted by the assimilation of COSMIC-2 observations.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d70c50b9

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:17:38.377180

Metadata language

eng; USA