Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling
Convective systems and associated cloudiness directly influence regional and local atmospheric radiation budgets, as well as dynamics and thermodynamics, through feedbacks. However, most subgrid-scale convective parameterizations in regional weather and climate models do not consider cumulus cloud feedbacks to radiation, resulting in biases in several meteorological parameters. We have incorporated this key feedback process into a convective parameterization and a radiation scheme in the Weather Research and Forecasting model, and evaluated the impacts of including this process in short-term weather and multiyear climate simulations. Introducing subgrid-scale convective cloud-radiation feedbacks leads to a more realistic simulation of attenuation of downward surface shortwave radiation. Reduced surface shortwave radiation moderates the surface forcing for convection and results in a notable reduction in precipitation biases. Our research reveals a need for more in-depth consideration of the effects of subgrid-scale clouds in regional meteorology/climate and air quality models on radiation, photolysis, cloud mixing, and aerosol indirect effects.
document
https://n2t.org/ark:/85065/d71g0n3g
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2012-12-01T00:00:00Z
Copyright 2012 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-15T21:31:13.814405