The formation of multiple squall lines and the impacts of WSR-88D radial winds in a WRF simulation
A detailed observational and Weather Research and Forecasting (WRF) model analysis utilizing Weather Surveillance Radar-1988 Doppler (WSR-88D), surface, and upper-air observations, as well as Geostationary Operational Environmental Satellite (GOES) images, shows a chain of events that leads to the formation of two prefrontal squall lines along the western Gulf coast on 29-30 April 2005. An approaching surface cold front (CF) generated an atmospheric bore that propagated along an inversion layer and excited high-frequency, low-level tropospheric gravity waves, initiating a squall line 60 km east of the cold front. This sequence of events manifested itself as low-level convergence ahead of the CF, which was detected by nearby WSR-88D radars. Two WRF model experiments were conducted in which one assimilated conventional observations (CTRL), and another included radar radial winds from nine WSR-88D locations (denoted as RADAR). Better representation of the low-level kinematics in RADAR yielded a distinct convergence line associated with the primary squall line.
document
http://n2t.net/ark:/85065/d79888sb
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2010-02-01T00:00:00Z
Copyright 2010 American Meteorological Society (AMS).
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:25:33.361154