Identification

Title

Contrasting impacts of urban forms on the future thermal environment: Example of Beijing metropolitan area

Abstract

This study investigated impacts of urban forms on the future thermal environment over Beijing, the capital city of China. Beijing is experiencing remarkable urban expansion and is planned to undergo the transformation of urban forms from single-centric (compact-city) to poly-centric city (dispersed-city). Impacts of urban forms on the future thermal environment were compared and evaluated by conducting numerical experiments based on a regional atmospheric model coupled with a single-layer urban canopy model as well as future climate forcing output from a global climate model. Results show that a dispersed city is efficient in reducing mean urban heat island intensity, but produces larger thermal loading and deeper thermal feedback at the regional scale compared to a compact city. Thermal comfort over downtown areas is reduced in compact-city scenario under future climate conditions. Future climate contributes almost 80% of the additional thermal loading over urban areas, with the remaining 20% contributed by urbanization (for both the compact-city and dispersed-city scenarios). The thermal contrast between the two urban forms is dominated by the expected future climate change. This study leads to two complementary conclusions: (i) for developing assessments related to current climate comfort, urban form of the city is important; (ii) for assessing future climate change impacts, the areal coverage of the city and urbanization extent emerges to be more important than the details related to how the urbanization will evolve.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d73r0vg8

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 Authors. This work is distributed under the Creative Commons Attribution 3.0 License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:01:17.379062

Metadata language

eng; USA