Wintertime northern hemisphere response in the stratosphere to the Pacific Decadal Oscillation using the Whole Atmosphere Community Climate Model
The response of the Northern Hemisphere winter stratosphere to the Pacific decadal oscillation (PDO) is examined using the Whole Atmosphere Community Climate Model. A 200-yr preindustrial control simulation that includes fully interactive chemistry, ocean and sea ice, constant solar forcing, and greenhouse gases fixed to 1850 levels is analyzed. Based on principal component analysis, the PDO spatial pattern, frequency, and amplitude agree well with the observed PDO over the period 1900-2014. Consistent with previous studies, the positive phase of the PDO is marked by a strengthened Aleutian low and a wave train of geopotential height anomalies reminiscent of the Pacific-North American pattern in the troposphere. In addition to a tropospheric signal, a zonal-mean warming of about 2 K in the northern polar stratosphere and a zonal-mean zonal wind decrease of about 4 m s-1 in the PDO positive phase are found. When compositing PDO positive or negative winters during neutral El Niño years, the magnitude is reduced and depicts an early winter forcing of the stratosphere compared to a late winter response from El Niño. Contamination between PDO and ENSO signals is also discussed. Stratospheric sudden warmings occur 63% of the time in the PDO positive phase compared to 40% in the negative phase. Although this sudden warming frequency is not statistically significant, it is quantitatively consistent with NCEP–NCAR reanalysis data and recent observational evidence linking the PDO positive phase to weak stratospheric vortex events.
document
http://n2t.net/ark:/85065/d7ms3v78
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2016-02-01T00:00:00Z
Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:03:47.017382