Identification

Title

Development of a polar stratospheric cloud model within the Community Earth System Model: Assessment of 2010 Antarctic winter

Abstract

To simulate polar stratospheric clouds (PSCs) during the Antarctic winter of 2010, we have developed a PSC model within the Community Earth System Model framework that includes detailed microphysics of sulfuric aerosols and three types of PSCs: supercooled ternary solution (STS), nitric acid trihydrate (NAT), and ice. Our model includes two major NAT formation mechanisms, both of which are essential to reproduce the PSC and gas phase chemical features in the 2010 Antarctic winter. Homogeneous nucleation of NAT from STS produces NAT particles with sizes near 8m, which are important to properly simulate denitrification and the gas phase HNO3 observed by the Microwave Limb Sounder (MLS). Heterogeneous nucleation of NAT on ice particles or ice particles on NAT and subsequent evaporation of the ice produces NAT particles with sizes from submicrometers to a few micrometers. These particles account for the large backscattering ratio from NAT observed by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations satellite, especially in the midwinter season. Adding temperature fluctuations from gravity waves is important to produce larger number density and higher backscattering ratio from ice and NAT particles. However, our model needs a better representation of waves to improve the backscattering ratio and gas phase HNO3 compared with observations. Our model also includes homogeneous nucleation of ice from STS and heterogeneous nucleation of ice on NAT. The model reproduces the gas phase H2O during the winter within the uncertainty of the MLS observations.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d70g3npx

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-10-12T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:17:24.639252

Metadata language

eng; USA