Understanding the influence of assimilating subsets of enhanced atmospheric motion vectors on numerical analyses and forecasts of tropical cyclone track and intensity with an ensemble Kalman filter
Recent studies have shown that assimilating enhanced satellite-derived atmospheric motion vectors (AMVs) has improved mesoscale forecast of tropical cyclones (TC) track and intensity. The authors conduct data-denial experiments to understand where the TC analyses and forecasts benefit the most from the enhanced AMV information using an ensemble Kalman filter and the Weather Research and Forecasting Model. The Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin provides enhanced AMV datasets with higher density and temporal resolution using shorter-interval image triplets for the duration of Typhoon Sinlaku and Hurricane Ike (both 2008). These AMV datasets are then spatially and vertically subsetted to create six parallel cycled assimilation-forecast experiments for each TC: all AMVs; AMVs withheld between 100 and 350 hPa (upper layer), between 350 and 700 hPa (middle layer), and between 700 and 999 hPa (lower layer); and only AMVs within (interior) and outside (exterior) 1000-km radius of the TC center. All AMV subsets are found to be useful in some capacity. The interior and upper-layer AMVs are particularly crucial for improving initial TC position, intensity, and the three-dimensional wind structure along with their forecasts. Compared with denying interior or exterior AMVs, withholding AMVs in different tropospheric layers had less impact on TC intensity and size forecasts. The ensemble forecast is less certain (larger spread) in providing accurate TC track, intensity, and size when upper-layer AMVs or interior AMVs are withheld. This information could be useful to potential targeting scenarios, such as activating and focusing satellite rapid-scan operations, and decisions regarding observing system assessments and deployments.
document
http://n2t.net/ark:/85065/d7d50p53
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2015-07-01T00:00:00Z
Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:43:04.457572