Identification

Title

Assimilation of New York State Mesonet surface and profiler data for the 21 June 2021 convective event

Abstract

The New York State Mesonet (NYSM) has provided continuous in situ and remote sensing observations near the surface and within the lower troposphere since 2017. The dense observing network can capture the evolution of mesoscale motions with high temporal and spatial resolution. The objective of this study was to investigate whether the as-similation of NYSM observations into numerical weather prediction models could be beneficial for improving model analy-sis and short-term weather prediction. The study was conducted using a convective event that occurred in New York on 21 June 2021. A line of severe thunderstorms developed, decayed, and then reintensified as it propagated eastward across the state. Several data assimilation (DA) experiments were conducted to investigate the impact of NYSM data using the operational DA system Gridpoint Statistical Interpolation with rapid update cycles. The assimilated datasets included National Centers for Environmental Prediction Automated Data Processing global upper-air and surface observations, NYSM surface observations, Doppler lidar wind retrievals, and microwave radiometer (MWR) thermodynamic retrievals at NYSM profiler sites. In comparison with the control experiment that assimilated only conventional data, the timing and location of the convection reintensification was significantly improved by assimilating NYSM data, especially the Doppler lidar wind data. Our analysis indicated that the improvement could be attributed to improved simulation of the Mohawk- Hudson Convergence. We also found that the MWR DA resulted in degraded forecasts, likely due to large errors in the MWR temperature retrievals. Overall, this case study suggested the positive impact of assimilating NYSM surface and pro-filer data on forecasting summertime severe weather.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7n87fps

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:46.431354

Metadata language

eng; USA