Identification

Title

Skillful decadal prediction skill over the Southern Ocean based on GFDL SPEAR Model-Analogs

Abstract

The Model-Analogs technique is used in the present study to assess the decadal sea surface temperature (SST) prediction skill over the Southern Ocean (SO). The Model-Analogs here is based on reanalysis products and model control simulations that have similar to 1 degrees ocean/ice (refined to 0.5 degrees at high latitudes) components and 100 km atmosphere/land components. It is found that the model analog hindcasts show comparable skills with the initialized retrospective decadal hindcasts south of 50 degrees S, with even higher skills over the Weddell Sea at longer lead years. The high SST skills primarily arise from the successful capture of SO deep convection states. This deep ocean memory and the associated decadal predictability are also clearly seen when we assess the Model-Analogs technique in a perfect model context. Within 30 degrees S-50 degrees S latitudinal band, the model analog hindcasts show low skills. When we include the externally forced signals estimated from the large ensemble simulations, the model analog hindcasts and initialized decadal hindcasts show identical skills. The Model-Analogs method therefore provides a great baseline for developing future decadal forecast systems. It is unclear whether such analog techniques would also be successful with models that explicitly resolve ocean mesoscale eddies or other small-scale processes. This area of research needs to be explored further.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7r78k47

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:30.131293

Metadata language

eng; USA