Identification

Title

Ensemble methods for parameter estimation of WRF‐Hydro

Abstract

The WRF‐Hydro hydrological model has been used in many applications in the past with some level of history matching in the majority of these studies. In this study, we use the iterative Ensemble Smoother (iES), a powerful parameter estimation methodology implemented in the open‐source PEST++ software. The iES provides an ensemble solution with an uncertainty bound instead of a single best estimate which has been the common approach in the previous WRF‐Hydro studies. We discuss the importance of accounting for observation noise which results in a wider spread in the model solution. We investigate the impact of constructing objective functions by differentially weighting the observations to tune the model response toward model outputs appropriate for a specific application. Results confirm the necessity of differentially weighting the observations before calculation of the objective function as the optimization algorithm struggles with calculating parameter updates with uniform weighting. We also show that we achieve better model performance in terms of verification metrics with higher emphasis on the high flow events, when the objective function is tuned toward an application where the extreme events are of importance. We then investigate the impact of estimating more parameters, in particular we estimate a larger number of snow parameters. Results show a large improvement in the model performance. In summary, our study demonstrates the efficacy of employing iES alongside differential weighting of observations, highlighting its potential to enhance hydrological model parameter estimation.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7959nwk

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:55:27.284872

Metadata language

eng; USA