Multiscale convective organization and the YOTC Virtual Global Field Campaign
The Year of Tropical Convection (YOTC) project recognizes that major improvements are needed in how the tropics are represented in climate models. Tropical convection is organized into multiscale precipitation systems with an underlying chaotic order. These organized systems act as building blocks for meteorological events at the intersection of weather and climate (time scales up to seasonal). These events affect a large percentage of the world's population. Much of the uncertainty associated with weather and climate derives from incomplete understanding of how meteorological systems on the mesoscale (~1-100 km), synoptic scale (~1,000 km), and planetary scale (~10,000 km) interact with each other. This uncertainty complicates attempts to predict high-impact phenomena associated with the tropical atmosphere, such as tropical cyclones, the Madden-Julian oscillation, convectively coupled tropical waves, and the monsoons. These and other phenomena influence the extratropics by migrating out of the tropics and by the remote effects of planetary waves, including those generated by the MJO. The diurnal and seasonal cycles modulate all of the above. It will be impossible to accurately predict climate on regional scales or to comprehend the variability of the global water cycle in a warmer world without comprehensively addressing tropical convection and its interactions across space and time scales.
document
https://n2t.org/ark:/85065/d77p904d
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2012-08-01T00:00:00Z
Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-15T21:33:40.753137