Identification

Title

Chemistry-turbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere

Abstract

The hydroxyl radical (OH) is the most important oxidant in the atmosphere and the primary sink for isoprene, the dominant volatile organic compound emitted by vegetation. Recent research on the atmospheric oxidation capacity in isoprene-dominated environments has suggested missing radical sources leading to significant overestimation of the lifetime of isoprene. Here we report, for the first time, a comprehensive experimental budget of isoprene in the planetary boundary layer based on airborne flux measurements along with in situ OH observations in the Southeast and Central U.S. Our findings show that surface heterogeneity of isoprene emissions lead to a physical separation of isoprene and OH resulting in an effective slowdown in the chemistry. Depending on surface heterogeneity, the intensity of segregation (Is) could locally slow down isoprene chemistry up to 30%. The effect of segregated reactants in the planetary boundary layer on average has an influence on modeled OH radicals that is comparable to that of recently proposed radical recycling mechanisms.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7gq709d

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2015-12-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2015 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:05:47.163025

Metadata language

eng; USA